Markov Perfect Equilibrium
نویسندگان
چکیده
We define Markov strategy and Markov perfect equilibrium (MPE) for games with observable actions. Informally, a Markov strategy depends only on payoffrelevant past events. More precisely, it is measurable with respect to the coarsest partition of histories for which, if all other players use measurable strategies, each player's decision-problem is also measurable. For many games, this definition is equivalent to a simple affine invariance condition. We also show that an MPE is generically robust: if payoffs of a generic game are perturbed, there exists an almost Markovian equilibrium in the perturbed game near the initial MPE. Journal of Economic Literature Classification Numbers: C72, C73. 2001 Academic Press
منابع مشابه
Markov equilibria in dynamic matching and bargaining games
Rubinstein and Wolinsky (1990) show that a simple homogeneous market with exogenous matching has a continuum of (non-competitive) perfect equilibria; however, the unique Markov perfect equilibrium is competitive. By contrast, in the more general case of heterogeneous markets, we show there exists a continuum of (non-competitive) Markov perfect equilibria. However, a refinement of the Markov pro...
متن کاملEquilibrium Renement in Dynamic Voting Games
We propose two related equilibrium re nements for voting and agenda-setting games, Sequentially Weakly Undominated Equilibrium (SWUE) and Markov Trembling Hand Perfect Equilibrium (MTHPE), and show how these equilibrium concepts eliminate non-intuitive equilibria that arise naturally in dynamic voting games and games in which random or deterministic sequences of agenda-setters make o¤ers to sev...
متن کاملEquilibrium Refinement in Dynamic Voting Games
We propose two related equilibrium re nements for voting and agenda-setting games, Sequentially Weakly Undominated Equilibrium (SWUE) and Markov Trembling Hand Perfect Equilibrium (MTHPE), and show how these equilibrium concepts eliminate non-intuitive equilibria that arise naturally in dynamic voting games and games in which random or deterministic sequences of agenda-setters make o¤ers to sev...
متن کاملCommon Information based Markov Perfect Equilibria for Linear-Gaussian Games with Asymmetric Information
We consider a class of two-player dynamic stochastic nonzero-sum games where the state transition and observation equations are linear, and the primitive random variables are Gaussian. Each controller acquires possibly different dynamic information about the state process and the other controller’s past actions and observations. This leads to a dynamic game of asymmetric information among the c...
متن کاملA Foundation for Markov Equilibria in Infinite Horizon Perfect Information Games
We study perfect information games with an infinite horizon played by an arbitrary number of players. This class of games includes infinitely repeated perfect information games, repeated games with asynchronous moves, games with long and short run players, games with overlapping generations of players, and canonical non-cooperative models of bargaining. We consider two restrictions on equilibri...
متن کامل